

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 6 – 30-INCH DEER CREEK HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 1,790'
- Notable Obstacles: Deer Creek, several forested wetlands, and a creek ravine
- Length of Wetlands: The HDD alignment crosses through wetlands in multiple locations in the first 520' north of the entry point
- Waterbody Information: Deer Creek is approximately 50' wide, and 10' deep at the crossing location
- Depth of HDD Under Applicable Wetlands: Minimum of 13'
- Depth of HDD Under Waterbody: Minimum of 40'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X

- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Deer Creek crossing is located near pipeline milepost 6, roughly 7.5 miles south of Ashland, Wisconsin. It involves passing beneath Deer Creek, several forested wetlands, and the creek ravine. While the creek itself is only about 50 feet wide with a depth no more than 10 feet, the steep walled creek ravine is a more substantial obstacle at over 500 feet across. The proposed HDD alignment will be established in a new right-of-way running mostly north to south. Just offset from Schwiesow Road, the entry point of the drill, as well as the creek, wetlands, and ravine are within a densely treed area on the southern half of the HDD alignment. The exit point resides in a cultivated field to the north. For an overview of the area, refer to the Deer Creek plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Deer Creek Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary. Additional access points for containment and cleanup equipment may be required due to the steep terrain down into the base of the Deer Creek ravine.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within Deer Creek would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and creek bed features at the time and location of the release. As mentioned above, the average width of the creek is approximately 50 feet and the average depth is 10 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

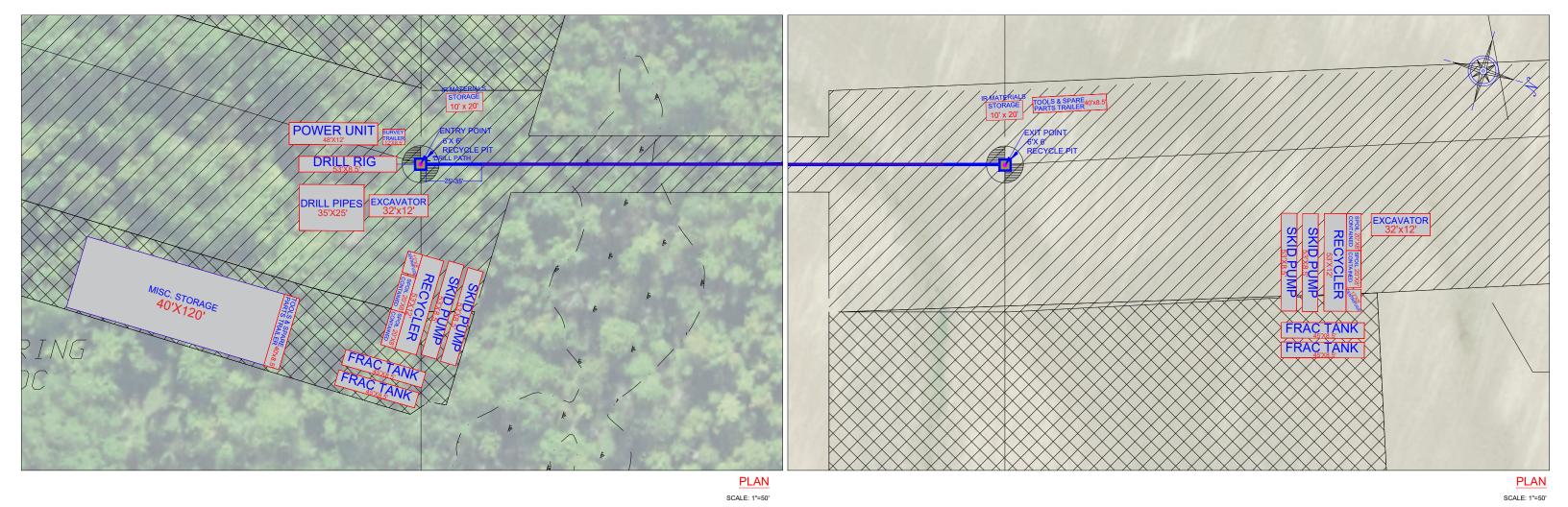
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022

For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 125'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED IN FIELD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDOR NEED FOR DUAL RIGG 1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- 4. DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICAITON IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

		REVISIONS		
10.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBRIDGE
A				PROJECT: LINE 5 PIP
В				DRAWING:
С				CONCEPT CROSSING REFI
D				MP6 - DEE
E				LOCATION
F				DRAWN B' DATE: 11

MIC	HELS*
I KEN 817 W. MAIN ST. P. PHONE: 920-	OCHLESS INC. 92,803,328 BROWN 92/0-62/2/1525/85/10 52006
AL BORE FOR: DGE	
PIPELINE PROJECT	
PTUAL WORKSPACE DESIGN DRA	AWING
REFERENCE:	
EER CREEK HDD	
CT PIPES SIZE (INCHES): 30"	
ON: ASHLAND COUNTY, WISCONS	BIN
BY: C.L.G.	JOB NUMBER: XXXXXXX
11/18/22	

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 4 – 30-INCH WHITE RIVER HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 4,485'
- Notable Obstacles: White River, surrounding valley, multiple wetlands and creeks
- Length of Wetlands: 508' (directly north of the entry point), 570' (south of White River), 755' (directly south of the exit point)
- Waterbody Information: The White River is approximately 140' wide, and 10' deep at the crossing location
- Depth of HDD Under Applicable Creeks: Minimum of 114'
- Depth of HDD Under Waterbody: Minimum of 108'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X

- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch White River crossing is located near pipeline milepost 4, roughly 5 miles south of Ashland, Wisconsin. It involves passing beneath the White River, the surrounding valley, and multiple wetlands and creeks. The river has a width of approximately 140 feet from bank to bank at the crossing location and a typical depth of less than 10 feet. The proposed HDD alignment will be established in a new right-of-way that runs south to north while paralleling an overhead powerline corridor on the northern end of the crossing. For an overview of the area, refer to the White River plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

The river, environmentally sensitive area, and some of the wetlands are within the forested valley; beyond which the surface elevation sharply rises roughly 135 feet, plateauing on both sides into densely treed areas with wetlands prominent throughout. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the White River Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the White River would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the river is approximately 140 feet and the average depth is 10 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

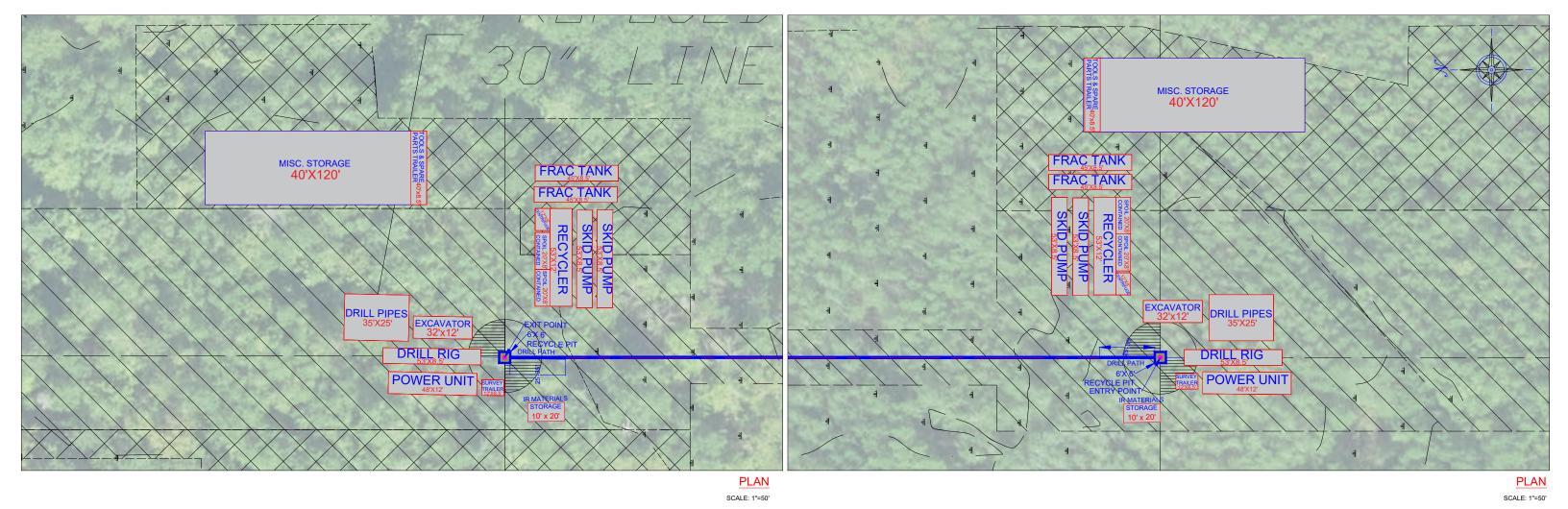
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

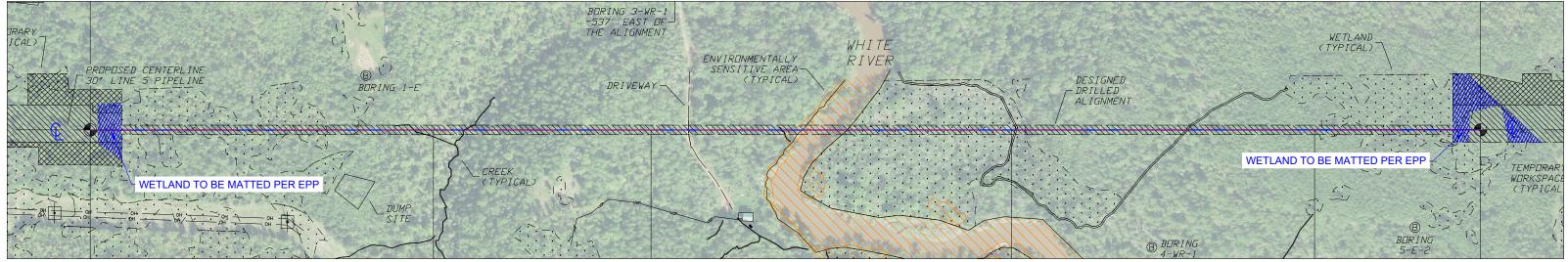
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 300'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.

 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED
 FIFLD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY
 UNAUTHORIZED USE OF DUPLICATION IS STRICTLY
 PROBINITED RECEIPT OF THIS DRAWING SIGNIFIES
 SIGNIFIES

 OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

		REVISIONS		
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBI
Α				PROJE
В				DRAWII
С				CON
D				MP4 PRO
E				LOC
F				DRA

TRENCHL	ESS INC.
TIONAL BORE FOR: RIDGE	
ct: 5 PIPELINE PROJECT	
NG: ICEPTUAL WORKSPACE DESIGN DRAWING	
ing reference: - WHITE RIVER HDD DUCT PIPES SIZE (INCHES): 30*	
ATION: ASHLAND COUNTY, WISCONSIN	
WN BY: C.L.G. E: 11/18/22	JOB NUMBER: XXXXXXX

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 11 – 30-INCH MARENGO RIVER DIRECT PIPE CROSSING

I. SITE SPECIFIC DIRECT PIPE INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- Direct Pipe Length: 2,013'
- Notable Obstacles: Marengo River, Marengo River Road, a forested wetland north of the road
- Length of Wetland: 364'
- Waterbody Information: The Marengo River is approximately 45' wide, and 10' deep at the crossing location
- Depth of DP Under Wetland: Minimum of 10' (directly south of exit workspace)
- Depth of DP Under Road: Minimum of 54'
- Depth of DP Under Waterbody: Minimum of 29'

II. DRILLING FLUID PLAN

Essential to any successful Direct Pipe installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out.

Bentonite serves many purposes in the Direct Pipe process. The bentonite drilling fluid is primarily used to clean cuttings from the tunnel face as the down hole cutter advances through the ground. The drilling fluid also serves to cool the down hole tools, stabilize the annulus, and reduce friction between the ground formation and the product pipe during installation.

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed work site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X
- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire tunneling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank down to the tunnel face. Closed circuit circulation from the tunnel face back to the separation plant will continue for the duration of the installation. The pumping rate and the rate of drilling fluid return is constantly monitored while the tunnel head is progressing.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the tunneling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during tunneling operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the bore exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the bore can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, in a horizontal directional drill, that path is through the annulus of the tunnel and back into the drilling fluid recycling unit. In the case of a Direct Pipe installation, the majority of the drilling fluid flows back through the pipe. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of tunneling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI personnel are trained in the safe handling and use of drilling fluids and materials associated with direct pipe installations. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during Direct Pipe operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the driller, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the mud system. The drilling fluid pumping rate and the rate of drilling fluid return to the mud system is constantly monitored by the driller while the tunnel head is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease tunneling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the tunnel head in relation to the point of entry
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on

If circulation is reestablished, tunneling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before tunneling resumes. The direct pipe alignment will be continually monitored for surficial drilling fluid as tunneling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags
- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the

amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue tunneling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue tunneling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line
- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions operations may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation

 Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-DP RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Superintendent-DP RIG#2 (If Needed)		Michels Trenchless Inc.
Prilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and Monitoring

The 30-inch Marengo River direct pipe crossing is located near pipeline milepost 11, about 11 miles directly south of Ashland, Wisconsin and roughly 1.5 miles west of Marengo, Wisconsin. The crossing involves passing beneath the Marengo River, Marengo River Road, and a forested wetland north of the gravel road. The river has a width of roughly 45 feet from bank to bank at the crossing location and a typical depth of less than 10 feet. The proposed alignment will be established in a new right-of-way that runs mostly north to south. While topography over the length of the crossing varies, likely as a result of historical river meander, elevation differential between the endpoints is only about 16 feet.

For an overview of the area, refer to the Marengo River plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted. Prior to commencing operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the path to support monitoring for, and response to, any potential inadvertent releases. Monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Marengo River crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the Marengo River would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the river is approximately 45 feet and the average depth is 10 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

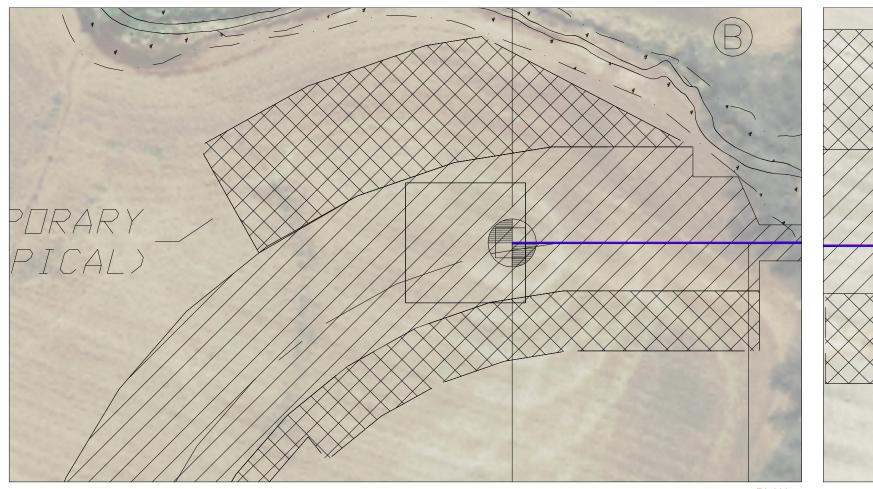
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

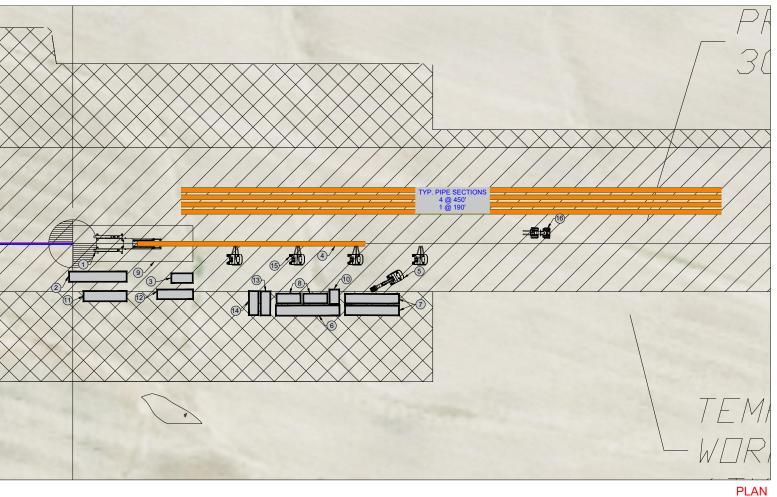
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

PLAN SCALE: 1"=80'

MARENGU BORING RIVER 19-C UNDERGROUND ELECTRIC NAL TEMPORARY ACE (TYPICAL) BURING PRELIMINARY L DIRECT PIPE CENTERL INE

OVERALL PLAN VIEW

SCALE: 1" = 175'

SCALE: 1"=80'

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.

- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICATION IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES ACCEPTANCE OF SAID CONDITIONS.
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

DPI EQUIPMENT LEGEND

- 8 CUTTINGS BIN (20' X 8')
- (3) CONTROL CABIN (12' X 8.5')
- 4 TYPICAL PIPE SECTION

POWER MODULE (48' X 8.5')

1 PIPE THRUSTER (53' X 8.5')

- (5) EXCAVATOR (32' X 12')
- 6 RECLAIMER (48' X 8.5')
- 7 FRAC TANK (45' X 8.5')
- 9 ENTRY (30' X 100')
- (10) CENTRIFUGE (12' X 8')
- - 12 POWER PACK
- 13 HIGH PRESSURE WATER JETTING
- 14) BENTONITE PUMP 15) SIDE BOOM CRANE
- 16 FORKLIFT

PRELIMINARY DRAWING

	REVISIONS					
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING			
Α						
В						
С						
D						
Е						
F						

TRENCH	LESS, INC.				
DIRECT STEERABLE PIPE THRUSTING INSTALLATION FOR: ENBRIDGE	·				
ROJECT: LINE 5 PIPELINE PROJECT					
DRAWING:					
CONCEPTUAL WORKSPACE DESIGN DRAWING					
CROSSING REFERENCE:					
MP11 - MARENGO RIVER DSPT					
PRODUCT PIPES SIZE (INCHES): 30"					
LOCATION: ASHLAND COUNTY, WISCONSIN					
DRAWN BY: C.L.G.	JOB NUMBER: XXXXXXX				
DATE: 11/30/22					

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT

MP 14 - 30-INCH BRUNSWEILER RIVER HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 2,809'
- Notable Obstacles: Brunsweiler River, surrounding river valley, multiple wetlands and creeks
- Length of Wetlands: 588' (directly east of the river), 50' (directly east of the exit workspace boundary)
- Waterbody Information: The Brunsweiler River is approximately 60' wide, and less than 5' deep at the crossing location
- Depth of HDD Under Waterbody: Minimum of 60'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X

- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation	
After Hours Contact			

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Brunsweiler River crossing is located near pipeline milepost 14, roughly 13 miles south of Ashland, Wisconsin and less than 1 mile west of Minersville, Wisconsin. It involves passing beneath the Brunsweiler River, the surrounding river valley, and multiple wetlands and creeks. The river has a width of approximately 60 feet from bank to bank at the crossing location and a typical depth of less than 5 feet at the time of the survey. The proposed HDD alignment will be established in a new right-of-way that runs east to west. The river and most of the wetlands are within the forested valley, beyond which the surface elevation sharply rises around 60 feet, plateauing on both sides. The entry point is in a mostly clear field adjacent to a driveway to the south. The HDD exits into a cultivated field west of the valley, just beyond a grove of trees. For an overview of the area, refer to the Brunsweiler River plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

The roughly 135-foot elevation differential between the HDD endpoints and the horizontal tangent will result in relatively high annular pressures in the lower portion of the hole. Elevated drilling fluid pressures in softer overburden soils will increase the potential for circulation losses due to hydrofracture, although the occurrence of drilling fluid losses at depth may not result in inadvertent returns at the surface. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Brunsweiler River Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the river would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the river is approximately 60 feet and the average depth is less than 5 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

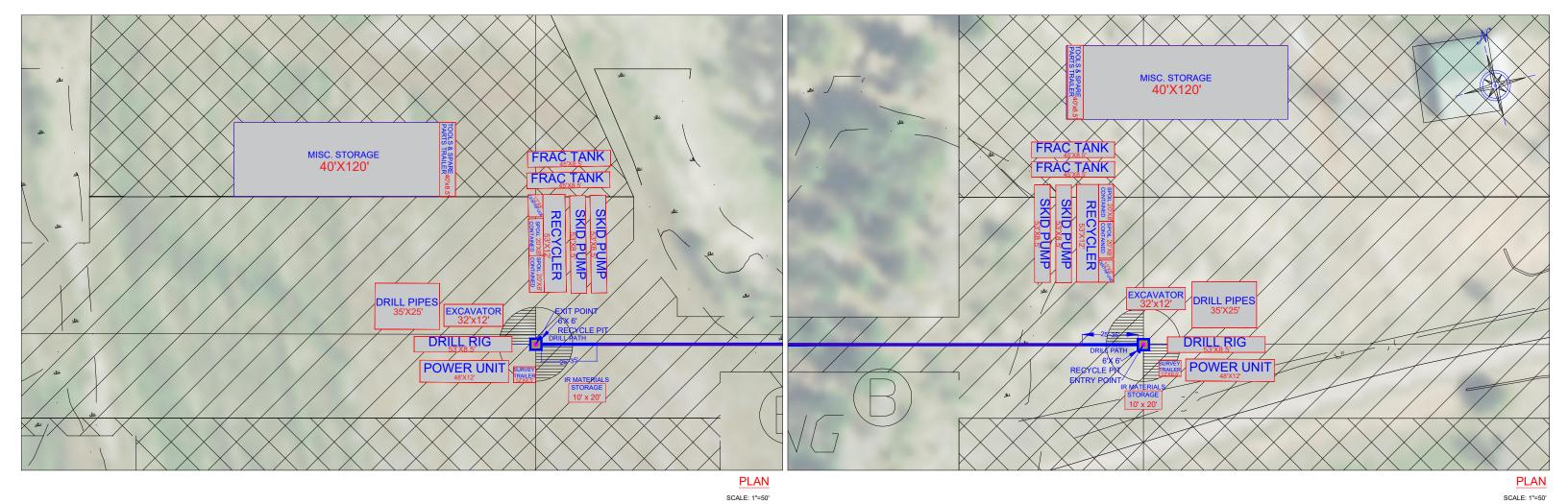
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

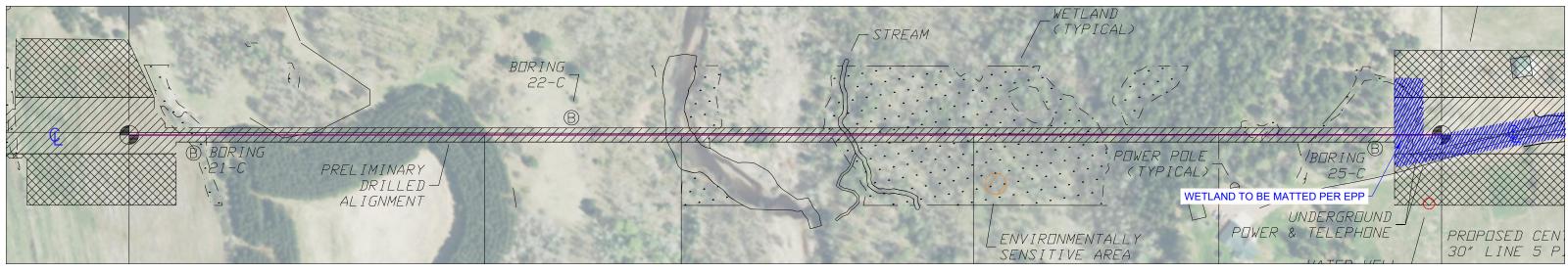
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 200'

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.

- 2. FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS, MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

\Box	REVISIONS					
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	DIRECTIONAL		
Α				PROJECT: LINE 5 P		
В				DRAWING:		
С				CONCEP CROSSING R		
D				MP14 - B PRODUC		
E				LOCATIO		
F				DRAWN DATE: 1		

IONAL DORF FOR: TUDGE 7: 5: 5 PIPELINE PROJECT			
io: CEPTUAL WORKSPACE DESIGN DRAWING			
NG REFERENCE:			
- BRUNSWEILER RIVER HDD			
DUCT PIPES SIZE (INCHES): 30"			
TION: ASHLAND COUNTY, WISCONSIN			
NN BY: C.L.G. JOB NUMBER: XXXXXXX			
: <u>11/18/22</u>			

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 15 – 30-INCH HIGHWAY 13 HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 2,007'
- Notable Obstacles: Highway 13, Wisconsin Central Railroad, a stream flanked by small wetlands within a surrounding shallow ravine, and Bass Lake Road
- Length of Wetlands: 90' of wetland within the ravine on each side of the stream
- Depth of HDD Under Highway 13: 61'
- Depth of HDD Under Railroad: 75'
- Depth of HDD Under Stream Ravine: 50'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X
- Bara-Kade

- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- · Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Highway 13 crossing is located near pipeline milepost 15, roughly 14 miles south southeast of Ashland, Wisconsin and roughly halfway between Minersville and North York, Wisconsin. It involves passing beneath Highway 13, Wisconsin Central Railroad, a stream flanked by small wetlands within a surrounding shallow ravine, and Bass Lake Road. At the crossing location, the shallow ravine has a width of almost 400 feet from the railroad to the west, across to the eastern top of bank. The proposed HDD alignment will be established in a new right-of-way that runs directly west to east. End points on this crossing are set with the entry in a cultivated field to west and the exit in an open field east of Bass Lake Road. For an overview of the area, refer to the Highway 13 plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Highway 13 Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary. A vacuum truck could be deployed if required due to the volume of the release. If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately.

Response to an inadvertent release within the ravine could include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the stream, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

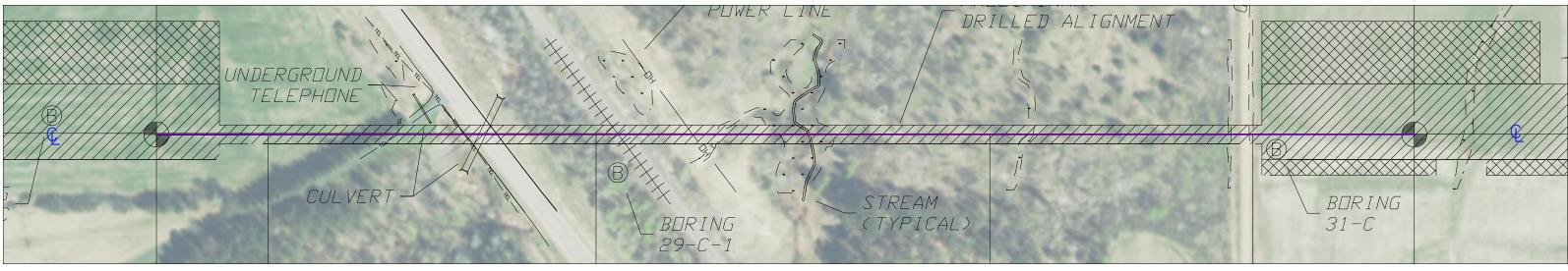
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 150'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.
 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED IN FIFL D BASED ON CONDITIONS ENCOUNTERED.
- 2. FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS, MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICATION IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

	REVISIONS			
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBRIDO
Α				PROJECT: LINE 5 P
В				DRAWING:
С				CONCEP CROSSING RE
D				MP15 - H
E				LOCATIO
F				DRAWN DATE: 1

TRENCHLESS, INC.			
IONAL BORE FOR: RIDGE			
T. 5 PIPELINE PROJECT			
G:			
CEPTUAL WORKSPACE DESIGN DRAWING			
NG REFERENCE:			
- HIGHWAY 13 HDD			
OUCT PIPES SIZE (INCHES): 30"			
TION: ASHLAND COUNTY, WISCONSIN			
N BY: C.L.G. JOB NUMBER: XXXXXXX			
E: <u>11/18/22</u>			

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 16 – 30-INCH TROUT BROOK HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 2,356'
- Notable Obstacles: Trout Brook and the surrounding shallow ravine, multiple wetlands, and a creek
- Length of Wetlands: 385' (directly east of the brook), 138' (directly west of the brook), multiple small wetlands crossed up to 683' west of the exit workspace
- Waterbody Information: Trout Brook is approximately 25' wide, and less than 10' deep at the crossing location
- Depth of HDD Under East Side Creek: 40'
- Depth of HDD Under Trout Brook: 71'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X

- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Trout Brook crossing is located near pipeline milepost 16, roughly 15 miles south southeast of Ashland, Wisconsin. It involves passing beneath Trout Brook and the surrounding shallow ravine, multiple wetlands, and a creek. The ravine containing Trout Brook has a width of approximately 750 feet at the crossing location, while the waterway is roughly 25 feet across and has a typical depth of less than 10 feet. The proposed HDD alignment will be established in a new right-of-way and runs primarily west to east. The designed entry point is within an open field while the exit point is located on the downward slope of a small rise. For an overview of the area, refer to the Trout Brook plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Trout Brook Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary. Temporary access could be supported by construction matting installed during clearing within the wetland areas, and a vacuum truck could be deployed if required due to the volume of the release.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the brook would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the brook, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the brook is approximately 25 feet and the average depth is less than 10 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Trout Brook crossing is located near pipeline milepost 16, roughly 15 miles south southeast of Ashland, Wisconsin. It involves passing beneath Trout Brook and the surrounding shallow ravine, multiple wetlands, and a creek. The ravine containing Trout Brook has a width of approximately 750 feet at the crossing location, while the waterway is roughly 25 feet across and has a typical depth of less than 10 feet. The proposed HDD alignment will be established in a new right-of-way and runs primarily west to east. The designed entry point is within an open field while the exit point is located on the downward slope of a small rise. For an overview of the area, refer to the Trout Brook plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Trout Brook Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the brook would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the brook, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the brook is approximately 25 feet and the average depth is less than 10 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

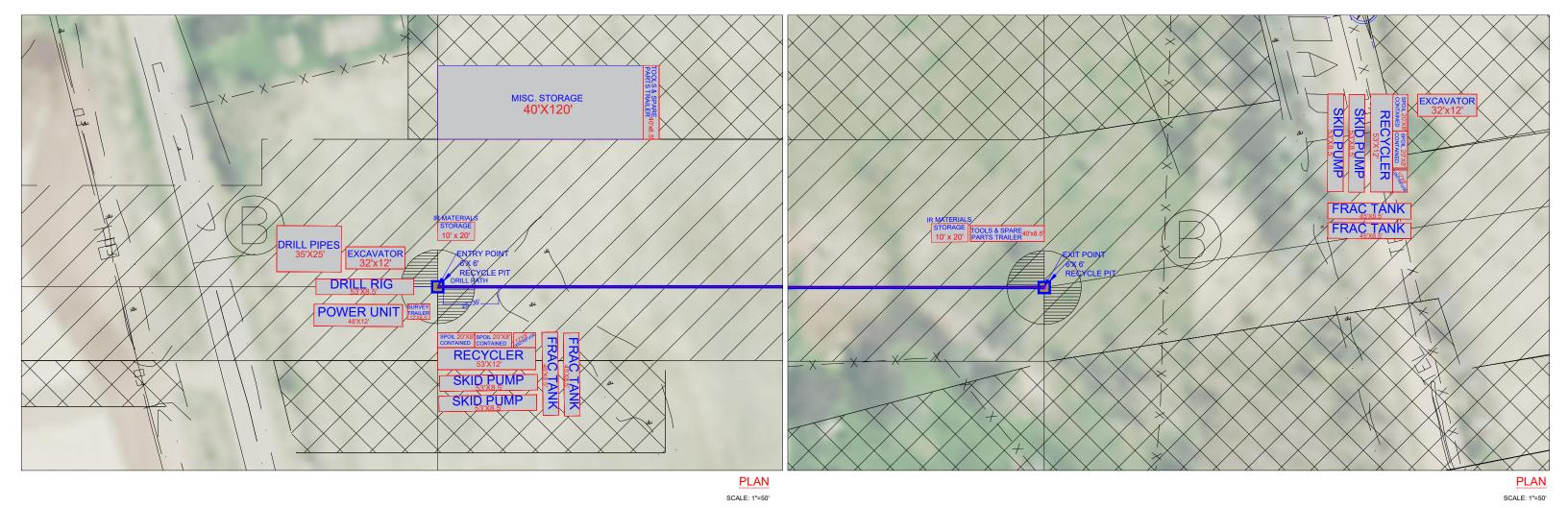
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

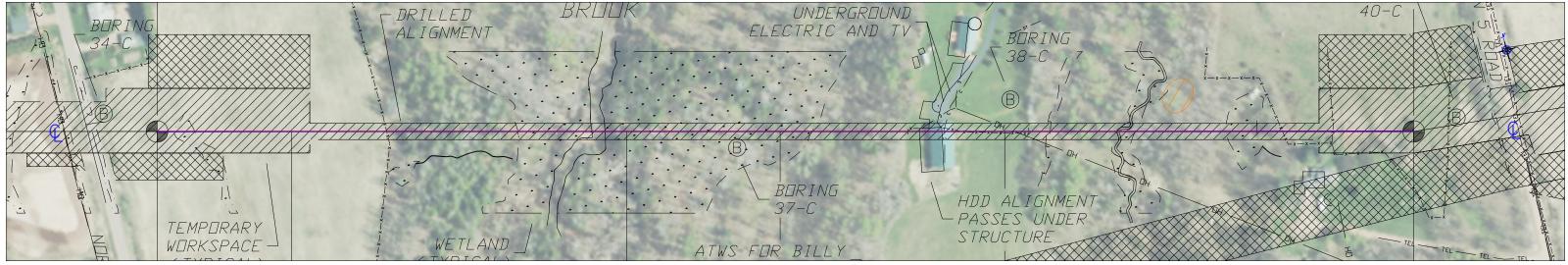
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 150'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.

 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED II
 FIELD BASED ON CONDITIONS ENCOUNTERED.
- 2. FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS, MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICATION IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

REVISIONS				
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBRIDGE
Α				PROJECT: LINE 5 PIPE
В				DRAWING:
-				CONCEPTU
С				CROSSING REFER
D				MP16 - TRO PRODUCT I
Е				LOCATION:
F				DRAWN BY DATE: 11/1

MIC	HELS [®]
B17 W. MAIN ST. P.O. BC PHONE: 920-583-	CHLESS INC 37 328 BROWN SYLE-124-1833 SIN 53006
L BORE FOR:	
PIPELINE PROJECT	
PTUAL WORKSPACE DESIGN DRAWII	NG
REFERENCE:	
TROUT BROOK HDD	
CT PIPES SIZE (INCHES): 30"	
ON: ASHLAND COUNTY, WISCONSIN	
BY: C.L.G.	JOB NUMBER: XXXXXXX
11/18/22	

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 17 – 30-INCH BILLY CREEK HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 1,788'
- Notable Obstacles: Billy Creek and the steep walls of the surrounding shallow ravine, and Poppe Road
- Waterbody Information: Billy Creek is approximately 10' wide, and less than 1' deep at the crossing location
- Depth of HDD Under Applicable Roads: Minimum of 40'
- Depth of HDD Under Waterbody: Minimum of 60'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X
- Bara-Kade

- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- · Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Billy Creek crossing is located near pipeline milepost 17, roughly 15 miles south southeast of Ashland, Wisconsin. It involves passing beneath the Billy Creek and the steep walls of the surrounding shallow ravine. The creek has a width of approximately 10 feet at the crossing location and a typical depth of less than 1 foot at the time of the site visit. The proposed HDD alignment will be established in a new right-of-way that runs west to east, generally parallel to Highway 13. The creek and surrounding ravine are in a densely treed area, with Poppe Road to the east, and another field east of the road. Moving west from the creek is an open field, followed by a slight rise in topography before the grade drops down into a small depression that likely serves as intermittent drainage. For an overview of the area, refer to the Billy Creek plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Billy Creek Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within Billy Creek would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the creek is approximately 10 feet, and the average depth is less than a foot. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

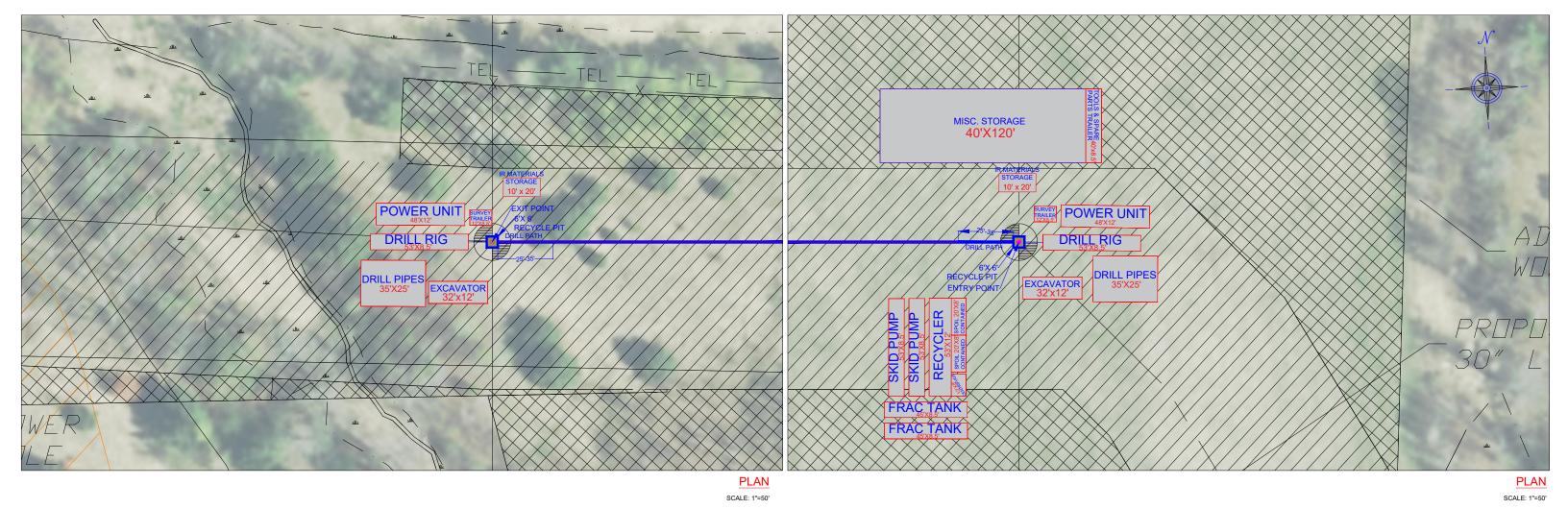
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022

For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 125'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.

 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED
 FIELD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (I-RIG AT ENTRY AND -IRIG AT EXIT) FOR OVERALL SAFETY
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY
 UNAUTHORIZED USE OF DUPLICATION IS STRICTLY
 PROMINING SIGNIFIES
 PROMIN
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

REVISIONS				
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBI
Α				PROJE
В				DRAWII
С				CON
D				MP1
E				LOC
F	12/1/2022	ADDED EQUIPMENT TO EXIT SIDE		DRA'

TRENCH	HESS INC	
817 W. MAIN ST. P.O. BOX PHONE: 920-583-31:	HLESS INC. 128 BROWNSVILLE, WISCONSIN 53008	
AL BORE FOR: DGE		
PIPELINE PROJECT		
EPTUAL WORKSPACE DESIGN DRAWING	3	
REFERENCE:		
BILLY CREEK HDD		
JCT PIPES SIZE (INCHES): 30"		
ION: ASHLAND COUNTY, WISCONSIN		
N BY: C.L.G.	JOB NUMBER: XXXXXXX	
11/18/22		

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 19 – 30-INCH SILVER CREEK HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 3,674'
- Notable Obstacles: Highway C, upland and creek valley wetlands, several meanders of Silver Creek, excavated gravel pit area
- Length of Wetlands: 795' (upland area west of Silver Creek), 45' (between two creek meanders), 130' (east of Silver Creek in the valley)
- Waterbody Information: Three separate areas along the HDD alignment with a maximum 30'/5' width/depth
- Depth of HDD Under Applicable Roads: Minimum of 42'
- Depth of HDD Under Waterbody: Minimum of 102'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X

- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- · Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The Silver Creek crossing is located near pipeline milepost 19, roughly 16 miles south southeast of Ashland, Wisconsin. It involves passing beneath Highway C, a forested wetland, Silver Creek, and the surrounding creek valley. At each place the HDD alignment crosses the waterway, the creek has a width of approximately 30 feet from bank to bank and a typical depth of less than 5 feet. The proposed HDD alignment has been established in a new right-of-way running roughly west to east. For an overview of the area, refer to the Silver Creek plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted.

The creek and some of the wetlands are within the treed valley, beyond which the surface elevation quickly rises over 100 feet to the west and roughly 125 feet to the east. The topography plateaus to the west into densely forested wetland and to the east adjacent to an active gravel excavation pit. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetland along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Silver Creek Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within Silver Creek would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the HDD alignment crosses Silver Creek in multiple places with the average width of the creek at 30 feet and the average depth of 5 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

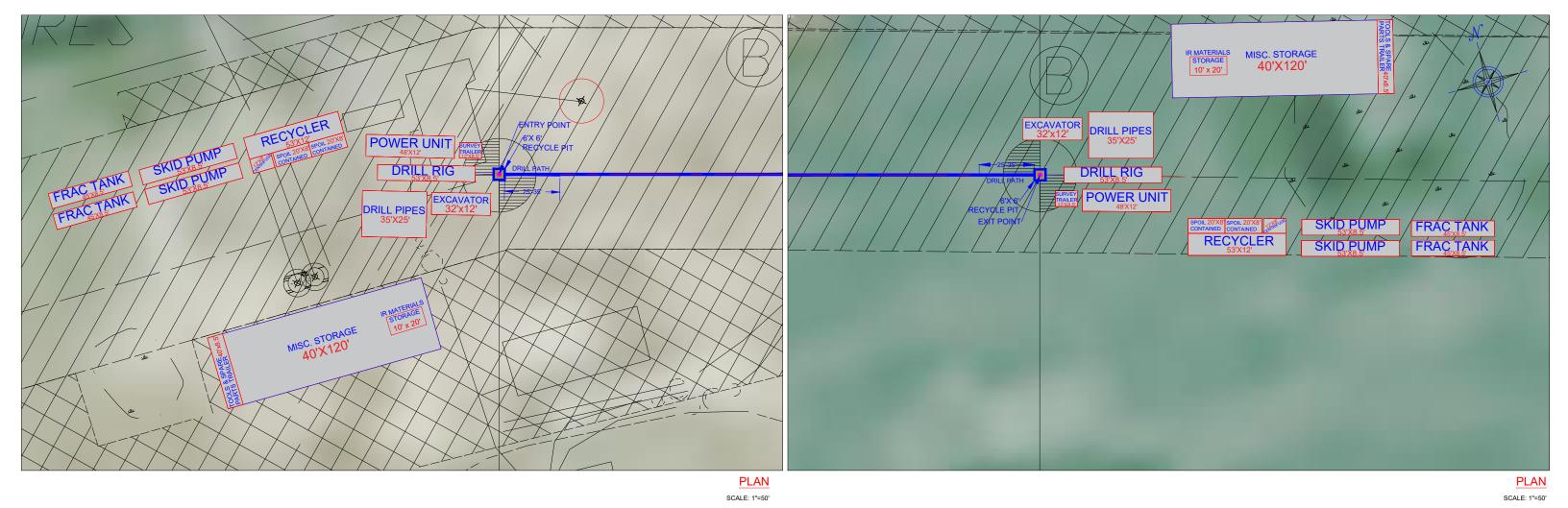
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 250'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.

 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED II
 FIELD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (I-RIG AT ENTRY AND I-RIG AT EXIT) FOR OVERALL SAFETY
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OR DUPLICATION IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

				- 1
		REVISIONS		
<u>NO.</u>	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBI
Α				PROJE
В				DRAWI
С				CON
D				MP1 PRO
Е				LOC
F				DRA

TRENCH	LESS, INC.					
L BORE FOR:	100 320 327 7020					
GE						
PIPELINE PROJECT PTUAL WORKSPACE DESIGN DRAWING						
REFERENCE:						
SILVER CREEK HDD						
CT PIPES SIZE (INCHES): 30"	T PIPES SIZE (INCHES): 30"					
DN: ASHLAND COUNTY, WISCONSIN						
BY: C.L.G.	JOB NUMBER: XXXXXXX					
11/16/22						
	•					

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 22 – 30-INCH KRAUSE CREEK HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 2,092'
- Notable Obstacles: Krause Creek, multiple forested wetlands
- Length of Wetlands: 172' (directly southeast of entry workspace), 27' (north of Krause Creek within a small ravine)
- Waterbody Information: Krause Creek has a width of roughly 15' and depth typically less than 5 feet.
- Depth of HDD Under Waterbody: Minimum of 58'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X
- Bara-Kade
- AMC Gel

SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- · Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Krause Creek crossing is located near pipeline milepost 22, roughly 19 miles south, southeast of Ashland, Wisconsin. It involves passing beneath Krause Creek and the surrounding ravine, which contains multiple wetlands throughout the wooded area. While the creek only has a width of roughly 15 feet from bank to bank at the crossing location and a typical depth of less than 5 feet, the ravine is a more substantial obstacle. Krause Creek and the wetlands are within the treed ravine, beyond which the surface elevation sharply rises roughly 40 feet to the east and more gently rises to the west.

The crossing area plateaus on the north side in an open field while the south end appears to be in a thickly wooded area. The proposed HDD alignment will be established in a new right-of-way that runs mostly north to south. For an overview of the area, refer to the Krause Creek plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetland along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Krause Creek Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within Krause Creek would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the HDD alignment crosses Krause Creek where the width of the creek is roughly 15 feet and the depth less than 5 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

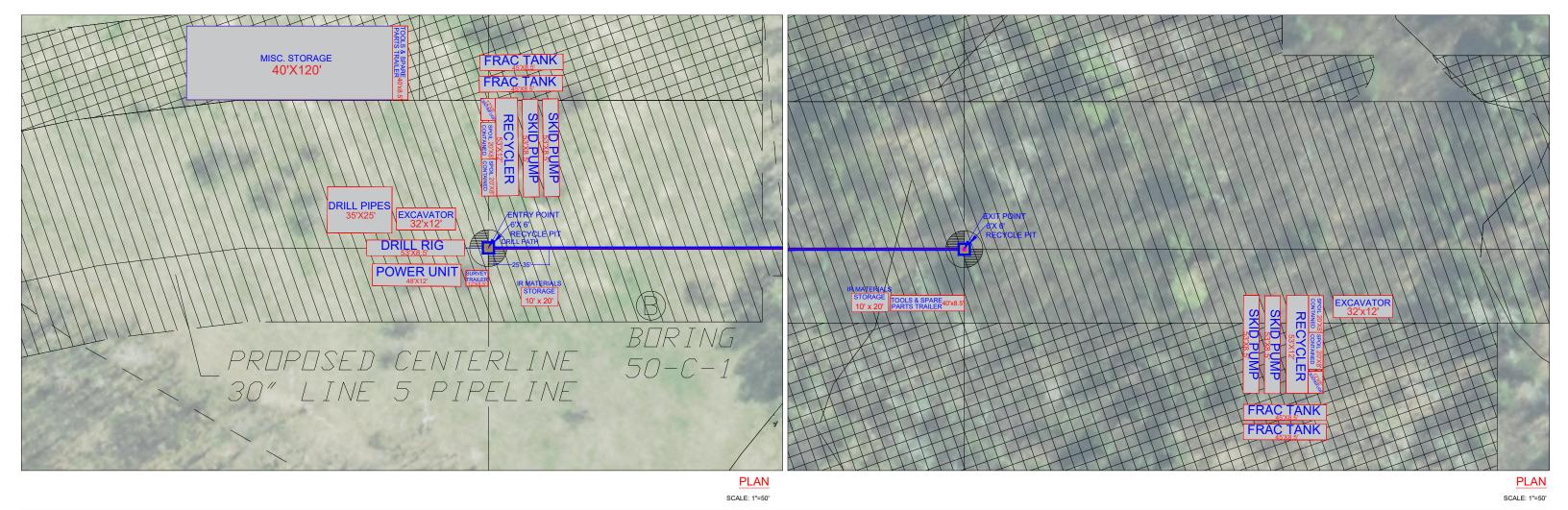
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

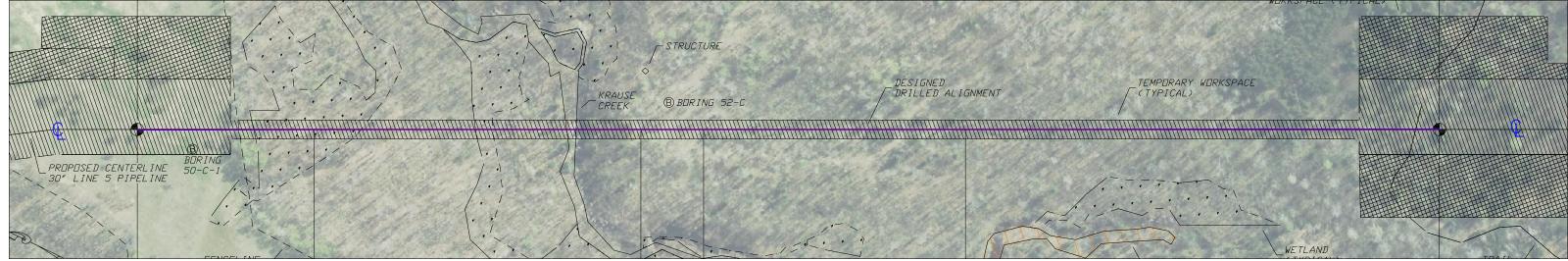
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 150'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED
 FIFLD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (I-RIG AT ENTRY AND I-RIG AT EXIT) FOR OVERALL SAFETY
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICATION IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

		REVISIONS		
<u>O.</u>	DATE	REVISION DESCRIPTION	SOURCE DRAWING	DIR EN
4				PRO
3				DRA
;				CR
)				MF
				LC
=				DF DA

TRENCH	LESS, INC.	
ONAL BORE FOR:		
5 PIPELINE PROJECT		
x EPTUAL WORKSPACE DESIGN DRAWING		
IG REFERENCE: - KRAUSE CREEK HDD - WOT PIPES SIZE (INCHES): 30°		
TION: ASHLAND COUNTY, WISCONSIN		
VN BY: C.L.G. :: 11/18/22	JOB NUMBER: XXXXXXX	

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 24 – 30-INCH BAD RIVER HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 1,788'
- Notable Obstacles: CN Railroad tracks, Bad River, multiple wetlands, and Copper Falls
 Drive
- Length of Wetlands: 672' (east of the Bad River), 268' (east of Copper Falls Drive), 75' (surrounding the exit point)
- Waterbody Information: The Bad River is approximately 70' wide, and less than 5' deep at the crossing location
- Depth of HDD Under Applicable Wetlands: Minimum of 30'
- Depth of HDD Under Waterbody: Minimum of 47'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

Max Gel

- Super-Gel X
- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also

be through naturally occurring subsurface features such as fissures in the soil, shrinkage cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac

		truck or other storage tank. Maintain exterior valves.
Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags
- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

Immediately cease pumping drilling fluid

- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line
- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Bad River crossing is located near pipeline milepost 24, roughly 20 miles south southeast of Ashland, Wisconsin and on the northern edge of Mellen, Wisconsin. It involves passing beneath a set of CN Railroad tracks, the Bad River, multiple wetlands, and Copper Falls Drive. The river has a width of approximately 70 feet from bank to bank at the crossing location and a typical depth of less than 5 feet when the survey was performed. The proposed HDD alignment will be established in a new right-of-way running west to east. The river, environmentally sensitive area, and most of the wetlands are within what look to be the Bad River flood plain, beyond which the elevation rises steadily when moving out from each proposed end point.

West of the railroad is densely treed while cultivated fields lie east of the prominent wetlands. For additional details relative to site access locations, the project alignment sheets should be consulted. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Bad River Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the Bad River would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the river, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the river is approximately 70 feet and the average depth is less than 5 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

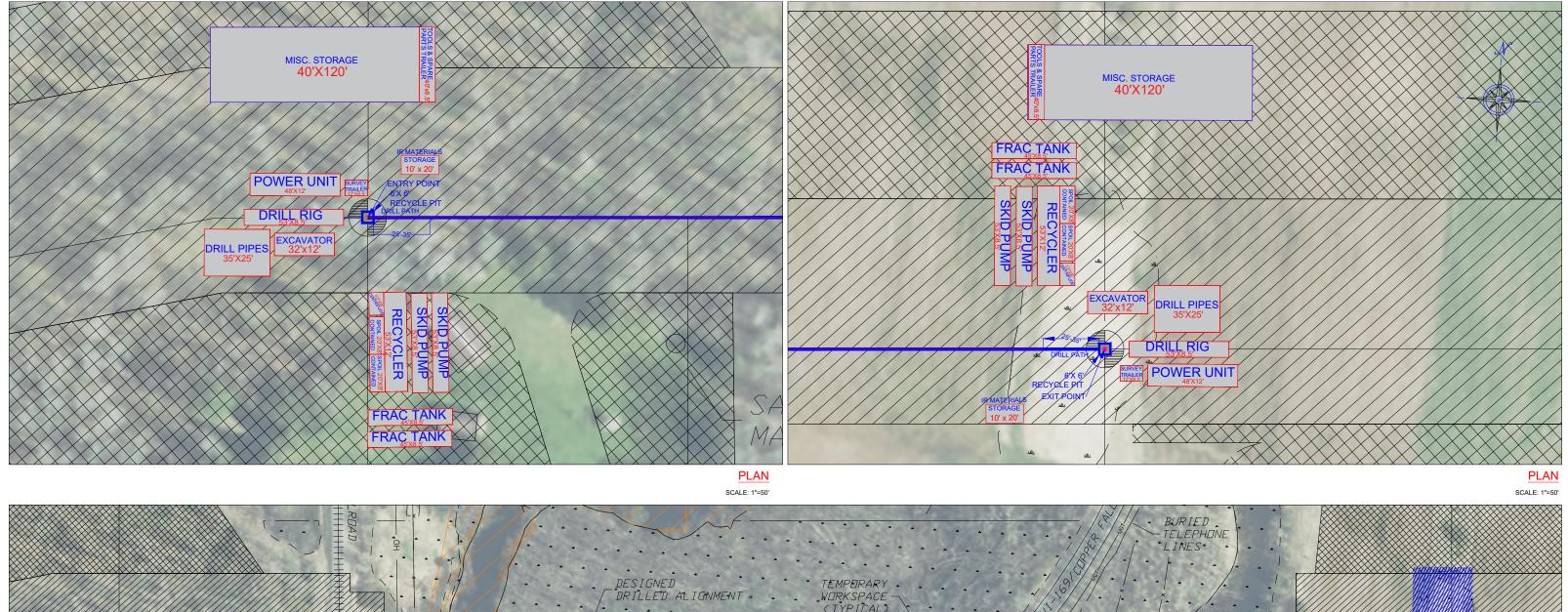
Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	


Last Update 10/20/2022

For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

DESIGNED
DRILLED ALIGNMENT
WURKSPACE
CTYPICALS

BURING
BURING
BURING
BURING
SANITARY
LINE
SANITARY
MANHOLE

ENBRIDGE NORTHERN
SIATES POWER
GAS PIPELINE

FENCE
CTYPICALS

TEMPERARY
WURKSPACE
CTYPICALS

WETLAND TO BE MATTED PER EPP

STATES POWER
CTYPICALS

OVERALL PLAN VIEW

SCALE: 1" = 125'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.

 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED IN FIELD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS, MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- 4. DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICATION IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

	REVISIONS			
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBRIDGE
Α				PROJECT: LINE 5 PIP
В				DRAWING:
_				CONCEPT
С				CROSSING REFI
D				MP24 - BA
_				PRODUCT
Е				LOCATION
				DRAWN B
F				DATE: 11

TREN	CHLESS, INC.	
	-3132 FAX: 920-924-4323 53006	
AL BORE FOR: DGE		
JGE		
PIPELINE PROJECT		
PTUAL WORKSPACE DESIGN DRAW	/ING	
REFERENCE:		
BAD RIVER HDD		
CT PIPES SIZE (INCHES): 30"		
ON: ASHLAND COUNTY, WISCONSIN		
NBY: C.L.G.	JOB NUMBER: XXXXXXX	
11/18/22		

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 34 – 30-INCH TYLER FORKS HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 1,851'
- Notable Obstacles: Tyler Forks waterway and multiple wetlands
- Length of Wetlands: 211' (directly southwest of the entry point), 43' (547' southwest of the entry point), 15' (on either side of the Tyler Forks waterway)
- Waterbody Information: The Tyler Forks waterway is approximately 57' wide, and less than 10' deep at the crossing location
- Depth of HDD Under Waterbody: Minimum of 60'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X
- Bara-Kade

- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- · Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Tyler Forks crossing is located near pipeline milepost 34, roughly 21 miles southeast of Ashland, Wisconsin and 3.5 miles south of Gurney, Wisconsin. It involves passing beneath the Tyler Forks and multiple wetlands. The main waterway has a width of approximately 57 feet from bank to bank along the project alignment. At the crossing location, there were no survey points to determine the depth of the stream; however, around 150 feet downstream, depths of roughly 2 feet were noted. The proposed HDD alignment will be established in a new right-of-way running mostly south to north. Across the length of the crossing, the topography is generally flat with a small rise of around 12 feet just north of the Tyler Forks. For the most part, the entire area is densely wooded, even throughout the identified wetlands.

For an overview of the area, refer to the Tyler Forks plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Tyler Forks Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the Tyler Forks would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the waterway, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the waterway is approximately 50 feet and the average depth is 2 feet. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

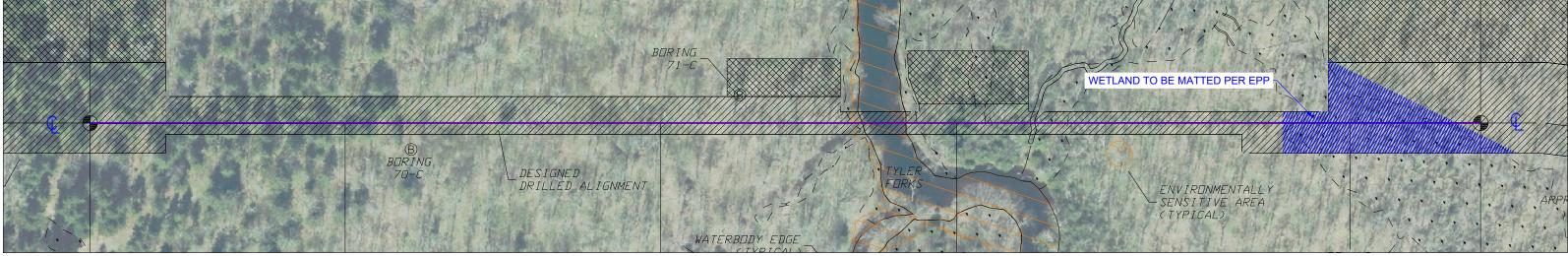
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	

Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

OVERALL PLAN VIEW

SCALE: 1" = 125'

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.

 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED II
 FIELD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDOR NEED FOR DUAL RIGG 1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICATION IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

REVISIONS				
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBRIDG
Α				PROJECT: LINE 5 PI
В				DRAWING:
С				CONCEP CROSSING RE
D				MP34 - TO
Е				LOCATIO
F				DRAWN E

TRENCHLESS, INC. 17 W, MONTH, Tigot - Star Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - Star Lay 202 (1922) 18 TW W, MONTH TIGOT - STAR LAY 202 (1922) 18 TW W, MONTH TIGOT			
ONAL BORE FOR: RIDGE			
T. 5 PIPELINE PROJECT			
CEPTUAL WORKSPACE DESIGN DRAWING			
NO REFERENCE: - TYLER FORKS HDD DUCT PIPES SIZE (INCHES): 30*			
TION: ASHLAND COUNTY, WISCONSIN			
VN BY: C.L.G. :: 11/18/22	JOB NUMBER: XXXXXXX		

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 38 – 30-INCH POTATO RIVER HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 3,496'
- Notable Obstacles: Potato River, the surrounding flood plain, and multiple wetlands
- Length of Wetlands: The HDD alignment crosses beneath multiple 300' to 500' wide stretches of wetland over the length of the crossing
- Waterbody Information: The Potato River is approximately 35' wide, and less than 5' deep at the crossing location
- Depth of HDD Under Wetlands: Minimum of 20' directly north of the entry workspace
- Depth of HDD Under Waterbody: Minimum of 60'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X

- Bara-Kade
- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- · Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Potato River crossing is located near pipeline milepost 38, roughly 21 miles east-southeast of Ashland and less than 2 miles directly east of Gurney, Wisconsin. It involves passing beneath the Potato River, the surrounding flood plain, and multiple wetlands. The river has a width of approximately 35 feet from bank to bank at the crossing location and a typical depth of less than 5 feet at the time of the survey. The proposed HDD alignment will be established in a new right-of-way running directly south to north. The river and some of the wetlands are within the wooded flood plain, adjacent to the river meander loops. To the south, just beyond the river, the surface elevation sharply rises roughly 65 feet, plateauing near the exit point.

Across the entire length of the crossing, the area is densely wooded. For an overview of the area, refer to the Potato River plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Potato River Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within the Potato River would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the river, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the river is approximately 35 feet and the average depth is less than 5 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

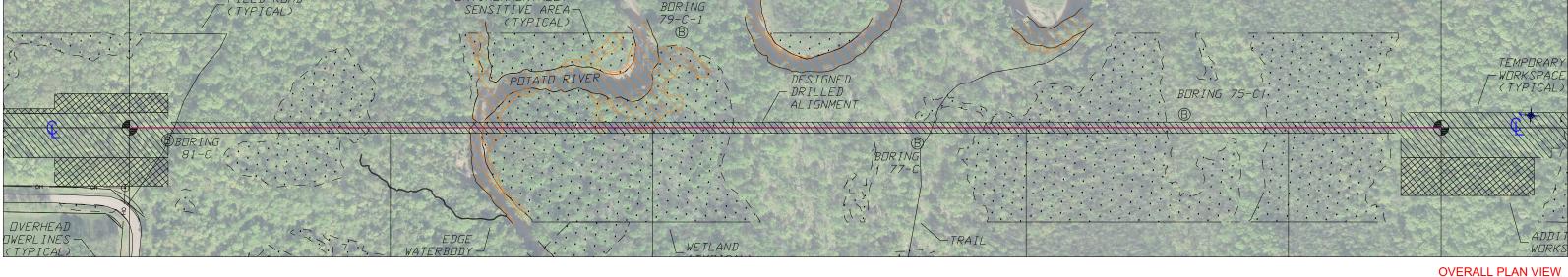
Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	

Last Update 10/20/2022


For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

CONSTRUCTION NOTES:

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED I
 FIELD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS, MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG AND/OR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION
 ANY UNAUTHORIZED USE OF DUPLICATION IS STRICTL
 PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIE

© COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

		REVISIONS		
NO.	DATE	REVISION DESCRIPTION	SOURCE DRAWING	ENBRIDG
Α				PROJECT: LINE 5 PI
В				DRAWING:
С				CONCEP*
D				MP38 - PO PRODUC
Е				LOCATIO
F				DRAWN E

MI	:HELS®	
TREI	NCHLESS INC. -968-031328 BROWN 5720-224-4525 55006	
AL BORE FOR: DGE		
PIPELINE PROJECT	AWING	
REFERENCE:		_
POTATO RIVER HDD ICT PIPES SIZE (INCHES): 30"		_
ON: ASHLAND COUNTY, WISCON	ISIN	_
BY: C.L.G.	JOB NUMBER: XXXXXXX	Т
11/18/22		

SCALE: 1" = 250'

MICHELS TRENCHLESS INCORPORATED (MTI) INADVERTENT RETURN MITIGATION AND CONTINGENCY PLAN ENBRIDGE LINE 5 PROJECT MP 39 – 30-INCH VAUGHN CREEK HDD CROSSING

I. SITE SPECIFIC HDD INFORMATION

In preparing the site-specific Inadvertent Return Mitigation and Contingency Plan for this crossing, the following information has been considered:

- HDD Length: 2,072'
- Notable Obstacles: Vaughn Creek, the surrounding ravine, and multiple wetlands
- Length of Wetlands: The HDD alignment crosses through 50' to 100' wide wetlands in multiple locations on the south (entry) side of the crossing and the creek ravine
- Waterbody Information: Vaughn Creek is approximately 25' wide, and less than 5' deep at the crossing location
- Depth of HDD Under Waterbody: Minimum of 60'

II. DRILLING FLUID PLAN

Essential to any successful HDD installation is the selection and proper utilization of drilling fluid, which consists primarily of water and dehydrated bentonite clay. Bentonite is a naturally occurring, non-toxic, inert substance that meets NSF/ANSI-60 Drinking Water Additive Standards and is frequently used for drilling potable water wells. The primary environmental impact of an inadvertent release of drilling fluid into a water body is a temporary increase in local turbidity until the drilling fluid dissipates with the current or settles out. Bentonite serves many purposes in the HDD process, including:

- Cleans the drilled cuttings from the bore hole
- Cools downhole drilling tools
- Transports cuttings to the surface
- Creates a wall cake within the annulus which aids in stabilizing the bore hole and prevents fluid loss into the formation
- Provides lubrication for the drill string and downhole assembly, reducing frictional forces
- Drives a downhole motor for rock drilling
- Provides hydrostatic fluid pressure in the bore hole to offset groundwater and formation pressures

The selected drilling fluid for this crossing consists of water (approximately 96%) and bentonite clay (approximately 4%). MTI has access to several different brands of bentonite. The selection of which brand to use is typically based on price, availability, and proximity to the proposed drill site. The following brands all have similar characteristics and provide the results described above:

- Max Gel
- Super-Gel X
- Bara-Kade

- AMC Gel
- SW-101

The bentonite will be mixed in a tank with a volume of up to 5,000 gallons, depending on mud rig size, in accordance with the manufacturer's recommendations. Approximately 15 to 20 pounds of powder bentonite will be mixed with 100 gallons of water and will be used throughout the entire drilling process to establish and maintain optimum drilling fluid properties. MTI maintains fluid performance through the daily sampling, testing, and recording of fluid properties during drilling operations. This provides the MTI Mud Technician the information needed to make educated recommendations regarding maintenance of efficient drilling fluid rheology consistent with hole stabilization and limiting of inadvertent surface returns.

Once the drilling fluid is thoroughly mixed to an acceptable consistency, it is pumped from the mud tank to the back end of the drilling rig. From there it is injected under high pressure through the drill stem at a rate of 300 to 800 gpm until it is expended through one or more nozzles in the drill bit. The spent drilling fluid, mixed with accumulated cuttings, flows back through the annular space between the drill stem and the formation wall. Drilling fluid eventually returns to the entry pit where it is pumped by a 6 hp submersible pump to the fluid recycling and processing system.

The first phase of the fluid processing system displaces solid returns at the shakers. Heavy solids are sifted out by a shaker with screens and transported from the site by dump truck to a disposal site. The scalped cuttings containing medium fines and reusable drilling fluid are pumped to the next phase of processing, which takes place at the desilter/mud cleaning unit. The heavier cuttings are again processed out for disposal while the recycled drilling fluid is pumped back and reused in the drilling process.

Additives may be deemed necessary based on evaluations and recommendations made by the Mud Technician during drilling and hole opening operations. If the need for drilling fluid additives does arise, it is anticipated that all additives used will be listed on the Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List.

III. PREVENTION - CONTAINMENT - COMMUNICATION

This section elaborates on measures to be implemented by MTI if an inadvertent release of drilling fluid occurs despite prevention efforts. Hydraulic fracture, also known as hydrofracture, is a phenomenon that occurs when drilling fluid pressure in the annular space of the drilled hole exceeds the strength of the surrounding soil, resulting in plastic deformation and fracturing. Uncontrolled expansion and fracture propagation in the soil surrounding the borehole can serve as a means by which drilling fluid can flow into the formation, resulting in lost circulation. In some cases, drilling fluid that is lost to the formation can flow up to the ground surface at locations other than the HDD end points, resulting in an inadvertent drilling fluid return.

Although hydrofracture may be one mechanism by which inadvertent drilling fluid returns occur, it is not the only one. In fact, it is thought that inadvertent returns due to true hydrofracture occur in only a small percentage of cases. Drilling fluid flows in the path of least resistance. Ideally, that path is through the annulus of the drilled hole and back to the drilling fluid containment pits at the HDD endpoints. However, the path of least resistance may also be through naturally occurring subsurface features such as fissures in the soil, shrinkage

cracks, or porous deposits of gravel. Drilling fluid may also flow to the surface along existing piers, piles, utility poles, or other structures.

Prior to the commencement of drilling operations, MTI will inform construction personnel of the responsible parties for release containment and response. MTI will ensure that the appropriate response personnel and containment equipment are on site.

Prevention

MTI drilling personnel are trained in the safe handling and use of drilling fluids and materials associated with directional drilling. Every project has a designated supervisory person responsible for implementation and execution of environmental policy, safety monitoring and reports, and implementation of mitigation plans. The Project Supervisor is well-versed in the written procedures and policies and is responsible for carrying them out.

Prevention of accidental spills of drilling fluid during HDD operations in the following areas is accomplished by the following actions. The responsible person follows proper protocol and established procedures for their job assignment.

Area of Potential Spill	Responsible Personnel	Preventative Action
Mud Containment Pits:	Driller:	Response:
Potential overflow located at excavated entry and exit areas.	Closely monitor fluid returns in the drill entry pit in view of the drill survey trailer to maintain appropriate levels.	Contain Area. If fluid level becomes high, run pump continuously in pit until safe level is achieved. Add multiple pumps if required.
Hoses:	Mud Technician:	Response:
Possible leaks at the connection between tanks and sump pumps.	Inspect hose connections every day for leaks and wear while maintaining a full stock of replacement parts in the supply trailer.	Contain Area. Repair leaks and replace worn-out hoses and parts.
Containment Tanks:	Mud Technician:	Response:
Potential overflow or leak at soil separation, cuttings containment and solids control tanks.	Continuously observe and control fluid levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.
Frac Tanks:	Mud Technician:	Response:
Potential overflow or leak at temporary holding tank for drill cuttings and fluids. At exterior valve location.	Continuously observe levels and flow from a birds-eye view located on the top deck of the mud mixing/soil separation rig.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck or other storage tank. Maintain exterior valves.

Vac Trucks/Dump Trucks:	Vac Truck Driver:	Response:
Possible leak or release at valve location or worn hose.	Maintain equipment in proper working order and follow specific guidelines in operation of vacuum and valves.	Contain Area. If solid control tanks reach overflow point, pump down to manageable level. May have to pump excess fluid/cuttings to vac truck.

During construction, MTI personnel will be aware of the importance of timely detection and response actions with respect to any release of drilling fluid. MTI personnel will have appropriate operational communication equipment, with the ability to communicate directly with the drilling rig operator, available at all times. The absence of an open bore hole conduit or the presence of a major formation fracture can lead to partial, and potentially total, loss of drilling fluid circulation.

While it is impossible to determine the precise nature of this type of fluid loss, it is possible to accurately monitor for it by watching for a significant difference between the rates the fluid is being pumped down hole and the rate it returns to the surface. The drilling fluid pumping rate and the rate of drilling fluid return to the surface is constantly monitored by the driller while the drilling is progressing. The driller will know immediately if an unusually high volume of drilling fluid is being lost down hole, depending on the ground conditions encountered in the crossing and taking into account the volume used to fill the bore hole. If the rig operator identifies a sustained loss in drilling fluid pressure or a loss of circulation, the following steps will be taken:

- Temporarily cease drilling operations, including pump shut down
- Dispatch experienced observers to monitor the area in the vicinity of the crossing for inadvertent drilling fluid returns at the ground surface
- Identify the position of the drill head in relation to the point of entry
- Restart the pump and stroke the bore hole up and down in 30-foot stroke lengths up to 6 times, but no fewer than 2, in an effort to size the bore hole annulus and reopen the circulation pathway
- Drilling fluid properties may be modified to aid in reestablishing circulation
- Personnel will continuously monitor for inadvertent fluid returns as long as the pump remains on
- Based on the driller's discretion, stroke length may be increased up to 90 feet or beyond the point at which circulation is believed to be lost

If circulation is reestablished, drilling will proceed as usual. If drilling fluid returns continue to diminish, or are lost completely, MTI will consult with the Owner before drilling resumes. The HDD alignment will be continually monitored for surficial drilling fluid as drilling proceeds.

Containment

Containment, response, and clean-up equipment will be available on both sides of the HDD crossing location prior to the commencement in order to assure a timely response in the event of an inadvertent drilling fluid release. Containment and response equipment includes but is not limited to:

- Straw bales and staking
- Pre-filled sandbags

- Turbidity curtain
- Check dams
- Silt fence
- Plastic sheeting and/or geotextile fabric
- Shovels, brooms, buckets, and other appropriate hand tools
- Pumps and sufficient hoses
- Fluid storage tanks
- Backhoe
- Vacuum truck
- Small boat (for larger rivers and open water wetlands as necessary)
- Light plant/generator

If an inadvertent drilling fluid release is observed, MTI will assess to determine the amount of fluid being released and the potential for the release to reach sensitive resource areas (e.g., wetlands, waterbodies). If an inadvertent return is discovered along the alignment and the amount of surficial drilling fluid is not great enough to allow practical collection, the affected area will be diluted with fresh water and allowed to dry and dissipate naturally. If the amount of surficial returns exceeds that which can be suitably contained with hand placed containment barriers, small collection sumps (less than 3.8 cubic meters) will be used to pump fluid back to the solids control system. Response measures will vary based on the location of the inadvertent release as discussed below.

Upland and Terrestrial Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an accessible upland location, the following procedure will be followed:

- · Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Contain the location such that the drilling fluid cannot migrate across the ground surface
- Excavate a small sump at the location and provide a means for the fluid to be returned to either the drilling fluid system or a disposal site (i.e., pump through hose or into tanker)
- Continue drilling operations after Owner representative approval
- Maintain the integrity of the containment measures, and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled

Wetland and Waterbody Locations

When drilling fluid returns are observed to be continuously surfacing above ground at an inaccessible location (i.e., wetlands or waterbodies), the following procedure will be followed:

- Immediately cease pumping drilling fluid
- Notify on-site contractor supervisor and Owner representative as required by the communication plan
- Evaluate the release and implement appropriate containment measures
- Evaluate the recovery measures to determine the most effective collection method
- Ensure that all reasonable measures within the limitations of the technology have been taken to reestablish drilling fluid circulation
- Upon approval from Owner representative, continue drilling with the minimum amount of drilling fluid required to penetrate the formation and successfully install the product line

- Maintain the integrity of the containment measures and monitor the fluid returns as required to ensure that no additional surface migration occurs
- Carry out clean-up once inadvertent returns are contained/controlled
- Consult with Owner and regulatory agencies to evaluate the circumstances of the release, discuss additional containment or cleanup requirements, and determine whether and under what conditions drilling may proceed

Clean-up

The following clean-up measures are to be considered as appropriate:

- Drilling fluid will be cleaned up by hand using shovels, buckets, and soft-bristled brooms as possible without causing extensive damage to existing vegetation
- Containment structures will be pumped out and the ground surface scraped to bare topsoil without causing undue loss of topsoil or damage to existing and adjacent vegetation
- Material will be collected in containers for temporary storage prior to removal from the site

Following clean-up activities, restoration of affected areas will be completed in accordance with all applicable local, state, and federal permits in addition to project environmental requirements.

Communication

Site Specific contacts are as follows:

Contacts	Phone No.	Affiliation
Drilling Contractor On-Site Representative TBD Project Manager		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#1		Michels Trenchless Inc.
Drilling Contractor On-Site Representative TBD Drill Superintendent-HDD RIG#2 (If Needed)		Michels Trenchless Inc.
Drilling Contractor Off-Site Representative TBD Assist. Operations Manager		Michels Trenchless Inc.

In case of emergency, MTI will notify the on-site inspector who will refer to the communication plan. The representative chain of communication is as follows:

Contacts	Phone No.	Affiliation
After Hours Contact		

The Owner's Field Representative will contact the following Organizations as needed:

Contacts	Phone No.	Affiliation

IV. SITE SPECIFIC RESPONSE

Site Access and HDD Monitoring

The 30-inch Vaughn Creek crossing is located near pipeline milepost 39, roughly 20 miles east of Ashland, Wisconsin and 3.5 miles west of Saxon, Wisconsin. It involves passing beneath Vaughn Creek and the surrounding ravine, as well as multiple wetlands. The creek has a width of approximately 25 feet from bank to bank at the crossing location and a typical depth of less than 5 feet. The proposed HDD alignment will be established in a new right-of-way running south to north while mostly paralleling an overhead powerline corridor to the west. The creek and some of the wetlands are within the wooded ravine, beyond which the surface elevation sharply rises roughly 70 feet, plateauing on both sides into dense trees.

At the top of both banks, the topography gently slopes down through densely forested areas with wetlands scattered throughout on the south side of the ravine. For an overview of the area, refer to the Vaughn Creek plan and profile design drawing. For additional details relative to site access locations, the project alignment sheets should be consulted. Prior to commencing drilling operations vegetation will be cleared within proposed workspace, during which time construction matting could be placed in the wetlands along the drill path to support monitoring for, and response to, any potential inadvertent releases. Drill path monitoring will follow the measures described in the "Prevention" section of this plan.

Inadvertent Release Response and Clean-up

Initial response to an upland or wetland inadvertent release on the Vaughn Creek Crossing will follow procedures outlined in the "Containment" section of this plan. Low ground pressure equipment will conduct limited passes to assist personnel carrying containment materials to a release location if necessary.

If a release were to occur outside of the proposed workspace shown on the plan and profile drawing, MTI would mobilize lightweight containment materials (e.g. hay bales, silt fence, sand bags) on foot to the inadvertent return location to isolate the surficial drilling fluid immediately. Response to an inadvertent release within Vaughn Creek would include placement of a turbidity curtain to isolate and envelop the released drilling fluid against the nearest bank of the creek, as feasible. The turbidity curtain placement and drilling fluid recovery efforts are dependent on the water depth and bed features at the time and location of the release. As mentioned above, the average width of the creek is approximately 25 feet and the average depth is less than 5 feet, therefore, multiple sections of turbidity curtains may be required. Once drilling fluid has been contained, a determination will be made as to the necessity for additional equipment or alternate access locations. Should an inadvertent drilling fluid return occur, drilling operations will only resume after receiving approval from Enbridge.

ATTACHMENT

WISCONSIN DEPARTMENT OF NATURAL RESOURCES APPROVED HORIZONTAL DIRECTIONAL DRILLING PRODUCTS LIST

Note: This list is intended to supplement the <u>Approved Drilling and Filling Sealing Products List including Heat Exchange Drillhole Products List</u> and the <u>National Sanitation Foundation (NSF) Drinking Water Treatment Chemicals NSF/ANSI/CAN 60-Health Effects</u> List . Products on both lists are approved for use in Horizontal Directional Drilling in addition to the products listed below.

Wisconsin Pre-Approved HDD Drilling Fluid Products:

Approval Date	Manufacturer or Distributor	Product Name	Material(s)	Uses	Special Conditions
6/20/22	Baroid Fluid Services/Haliburton	Polyselect Power Swell	Proprietary ingredients	Lost circulation material	
6/20/22	Bentonite Performance Materials/Halliburton	Polyselect Power Xan	Xanthan gum	Viscosifier	
6/20/22	Cetco	Drill-terge	Non-ionic surfactant	Drilling detergent/wetting agent	
6/20/22	Cetco	Rel-Pac Xtra- low	Polyanionic cellulose	Filtration control	
6/20/22	Cetco	Suspend-IT	Polysaccharid gum	Cutting transport	
6/20/22	DCS Fluid Solutions	Clay Breaker	Quaternary Ammonium Compound	Clay Stabilizer	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Polymud	Mineral Oil	Viscosofier	Requires project- specific pre- approval
6/20/22	DCS Fluid Solutions	Sandmaster	Xanthan gum	Viscosofier	
6/20/22	DCS Fluid Solutions	SealPac HV	Polysaccharide	Fluid Loss Reduction	
6/20/22	DCS Fluid Solutions	TorqBreaker	Quaternary Ammonium Alkyl dimethyl ammonium chloride Ethanolamine	Surfactant	Requires project- specific pre- approval
6/20/22	Halliburton Energy Services	Polyselect DMD Soda Ash	sodium carbonate	Buffer	
6/20/22	Lost Circulation Specialists, Inc.	Magna Fiber	Mineral fiber	Lost circulation material	
10/20/22	Northstar Fluid Solutions	Lubra-Star Plus	Proprietary, derived from oleo chemicals	Water soluble lubricant	Use product purchased after 10/15/22

Wisconsin Department of Natural Resources Approved Horizontal Directional Drilling Products List

Approval	Manufacturer or	Product	Material(s)	Uses	Special
Date	Distributor	Name			Conditions
6/20/22	Northstar Fluid Solutions	Star-Plex	Poly Hydroxy Silicate, Proprietary Mg, Na, Al compounds	Viscosofier	

Last Update 10/20/2022

For review of products not on the pre-approved list, please submit the material safety data sheet and product sheets used for marketing to <u>Samantha Whitens</u>, Office of Energy Storm Water Engineer or <u>Amy Minser</u>, Statewide Storm Water Engineer. The safety data sheet or supplementary material must disclose the presence of any ingredients listed on Table 1 in s. <u>NR 140.10</u>, Wis. Adm. Code and <u>Chemical List | Wisconsin Department of Health Services.</u> Section NR 283.55, Wis. Adm. Code allows the department to handle trade secrets as confidential information. If information is considered a trade secret, confidential information should be provided in a separate document, clearly marked as confidential, and a request for confidentially should be provided as required in s. <u>NR 2.19</u>, Wis. Adm. Code. Disclosure of the information to the Wisconsin Department of Health Toxicologist may be required as part of the Department of Natural Resources review process.

ATTACHMENT

EQUIPMENT AND CONTAINMENT SITE LAYOUT

WETLAND TO BE MATTED PER EPP

WETLAND TO BE MATTED DER EPP

JESIGNED

JEME

ALIGNMENT

TEME

ALIGNMENT

CONSTRUCTION NOTES

- EROSION CONTROL MEASURES TO BE IMPLEMENTED IN ACCORDANCE WITH EPP.
- IN THE EVENT OF INADVERTENT RETURNS, CONSTRUCTION EFFORTS SHALL CEASE UNTIL PERMITTED BY ENBRIDGE.

 NOTES
- PRELIMINARY DESIGNED DRAWING MAY BE MODIFIED I
 FIELD BASED ON CONDITIONS ENCOUNTERED.
- FIELD VERIFICATION OF STATIONS AND ELEVATIONS REQUIRED.
- 3. PLACEMENT OF DRILL RIG(S) IS NOT FIXED BY DESIGNATED ENTRY AND EXIT POINTS. MICHELS RESERVES THE RIGHT TO DETERMINE PLACEMENT OF DRILL RIG ANDIOR NEED FOR DUAL RIGS (1-RIG AT ENTRY AND 1-RIG AT EXIT) FOR OVERALL SAFETY AND CONSTRUCTABILITY OF PROPOSED HDD CROSSING.
- DRAWING IS PROPRIETARY TO MICHELS CORPORATION. ANY UNAUTHORIZED USE OF DUPLICAITON IS STRICTLY PROHIBITED. RECEIPT OF THIS DRAWING SIGNIFIES ACCEPTANCE OF SAID CONDITIONS.
- © COPYRIGHT, MICHELS DIRECTIONAL CROSSINGS, A DIVISION OF MICHELS CORPORATION, 2022.

PRELIMINARY DRAWING

	REVISIONS				
<u>O.</u>	DATE	REVISION DESCRIPTION	SOURCE DRAWING		ENE
4					PROJ
3					DRAW
;				I ⊢	COI
)					MP:
					LOC
=					DR/ DA

TRENCHLESS, INC.			
INAL BORE FOR:			
PIPELINE PROJECT			
4			
CEPTUAL WORKSPACE DESIGN DRAWING			
G REFERENCE:			
- VAUGHN CREEK HDD			
UCT PIPES SIZE (INCHES): 30"			
FION: ASHLAND COUNTY, WISCONSIN			
VN BY: C.L.G.	JOB NUMBER: XXXXXXX		
: 11/18/22			

OVERALL PLAN VIEW

SCALE: 1" = 250'