A Brief History of the St. Paul District

Significant Contributions

The St. Paul District office had been in existence for only three years when the Eastman Tunnel of Nicollet Island in Minneapolis collapsed in 1869. The district responded to this disaster by designing and building several structures to save both Nicollet Island and St. Anthony Falls. Those structures are still in place, and in use, today.

In 1910, it finished America’s first national dam with a hydroelectric plant, Lock and Dam 1 in Minneapolis. In 1912, it completed America’s first major reservoir system consisting of Winnibigoshish, Leech, Pokegama, Pine, Sandy and Gull reservoirs located in the Mississippi River Headwater.

In the 1970s, the St. Paul District proposed and constructed the Corps’ first nonstructural flood reduction project in Prairie du Chien, Wis., choosing to relocate structures rather than build levees.

In 2002, District personnel began deploying to support the reconstruction efforts in Afghanistan and Iraq. More than 125 district members have volunteered to deploy to the Middle East and assist these citizens in rebuilding their countries.

Major Awards

The district has received eight Chief of Engineers Awards of Excellence, more than any other Corps district to date:

- **2012** Fargo, N.D./Moorhead, Minn., Metropolitan Area Flood Risk Management Feasibility Study
- **2008** Grand Forks, N.D./East Grand Forks, Minn. Flood Damage Reduction
- **2008** Pool 5, Upper Mississippi River, Water Level Management for Ecosystem Restoration
- **2004** Pool 8 Islands Habitat Project
- **1998** St. Paul, Minn., Flood Control
- **1996** Rochester, Minn., Flood Control
- **1989** Weaver Bottoms Environmental Rehabilitation in Pool 5
- **1983** Lock and Dam 1 Major Rehabilitation

The history of the St. Paul District is the history of the upper Midwest and its growth over more than a century. When the district was established in 1866, there was a crucial need to prevent the disintegration of the Falls of St. Anthony, and, with it, the commercial importance of the Minneapolis milling center. After solving that engineering problem, the district saw and influenced the growth and demise of the lumber industry, the rise of the flour industry, the development and operation of Yellowstone National Park, the change from steamboats to diesel powered towboats on the Mississippi, the first flood control and hydroelectric power projects in the nation and, in most recent years, the creation of a very popular outdoor recreation program.

No stranger to controversy, the district, has, nevertheless, strived to respond to the needs of this important region.

—Col. (Retired) Forrest T. Gay, III, 49th District Engineer, St. Paul District

U.S. Army Corps of Engineers
St. Paul District
180 5th St. E., Ste. 700
St. Paul, MN 55101
www.mvp.usace.army.mil
A Brief History

The St. Paul District traces its origins to 1866, when Congress authorized the Corps of Engineers to establish a 4-foot navigation channel on the notoriously unreliable Upper Mississippi River. Maj. Gouverneur Kemble Warren, a West Point graduate widely acclaimed for his leadership at the Battle of Gettysburg, was tasked with initiating the new program and conducting preliminary surveys of the main river and its tributaries. Warren arrived in St. Paul, Minn., and opened the first district office in August 1866.

Well known for his hard-working and diligent manner, Warren set about establishing the new district and initiating his new projects. By 1869, he had already surveyed much of the region and sketched at least 30 maps of the main stem of the Mississippi and its tributaries. Additionally, he acquired the district’s first floating plant – a dredge and snag boat – for creating and maintaining a 4-foot low-water channel between St. Paul and St. Louis and authorized the construction of the first wing and closing dams in the district.

Changing Boundaries

The earliest description of the St. Paul District’s boundaries included the Mississippi River drainage from the river’s headwaters to the lower end of Lock and Dam 1 between St. Paul and Minneapolis, together with the Red River of the North drainage as far as the international boundary with Canada, and the Rainy River drainage in northern Minnesota, which encompasses the boundary waters area.

The district was extended south in 1919 to the mouth of the Wisconsin River and again in 1940 to Lock and Dam 10 at Guttenberg, Iowa. A portion of the Upper Peninsula of Michigan draining into Lake Superior and Isle Royale were added to the district in 1941 but lost in another realignment in 1979.

A Brief History, Continued

These measures ultimately proved inadequate to the growing commercial needs of the Twin Cities, and Congress authorized the Corps of Engineers to construct six dams in the headwaters between 1880 and 1907. Millers at St. Anthony Falls pushed for reservoirs above the falls, recognizing that the release of water from the reservoirs for navigation in the later summer and fall would increase the flow of water to keep their mills turning longer and more consistently. Though Congress initially balked at the project’s pork-barrel appearance, it finally authorized an experimental dam for Lake Winnibigoshish in 1880 and authorized the remaining dams shortly afterwards. The Headwaters project provided for construction of the Winnibigoshish Dam (1883-1884) and the completion of dams at Leech Lake (1884), Pokagama Falls (1884), Pine River (1886), Sandy Lake (1895) and Gull Lake (1912). In its 1895 annual report, the Corps of Engineers reported that releasing the water from the Headwaters reservoirs had successfully raised the water level in the Twin Cities by 12 to 18 inches, helping navigation interests and the millers. Also by 1895, the St. Paul District had built more than 100 miles of wing dams and 94 miles of shore protection at a cost of nearly $6 million.

Despite the Corps’ substantive channel improvement efforts, navigation died on the upper river. By 1918, virtually no traffic moved between St. Paul and St. Louis. Fearing that the Midwest would suffer economically without a vibrant and diverse transportation system, business interests initiated another movement to revive river transportation. Around 1925, they lobbied Congress and eventually won support in 1930 for a 9-foot channel project, which authorized the construction of 23 locks and dams on the Upper Mississippi River. These were completed in 1940.