HYDRAULIC CONCERNS 2019 AND 2020

Jon Hendrickson

Regional Technical Specialist Mississippi Valley Division

US Army Corps of Engineers ®

Hydraulic Engineer St. Paul District

February 2020

U.S. ARMY CORPS OF ENGINEERS

and Taking Care of People!

MINNESOTA RIVER

Decade	Bankful Flooding Events
1930-1939	0
1940-1949	1
1950-1959	3
1960-1969	5
1970-1979	2
1980-1989	5
1990-1999	9
2000-2009	6
2010-2019	18

- There is a statistically significant trend of increasing discharge from 1943 to 2019
- Average Discharge at Jordan
 - 1943 to 1980 = 3770 cfs
 - 1981 to 2019 = 7460 cfs (double the 1943 to 1980 ave.)
- Discharge in 2016, 2017, 2018, 2019 = 9360, 11,000,15520, 23550 cfs
- The number of bankfull flooding events (Q > 26,000 cfs) has increased in the 2010s (see table)
- 2010 to 2019 is wettest decade on record

BUILDING STRONG_® and Taking Care of People!

MINNESOTA RIVER, 2019

3

and Taking Care of People!

BUILDING STRONG®

CHIPPEWA RIVER

CHIPPEWA RIVER, 2019

MISSISSIPPI RIVER

Mississippi River at Winona, Minnesota (USGS Gage 05378500)

6

Average water Year Discharge at Winona 1943 to 1980 = 29,000 cfs1981 to 2019 = 37,300 cfs (28.6 % increase)

2016, 2017, 2018, 2019 = 45,000, 48,000, 51,000 and 69,000 cfs 2010 to 2019 is wettest decade on record

and Taking Care of People!

7

HYDROLOGY, GEOMORPHIC CHANGE, AND DREDGING

- > Higher flow rates are accelerating geomorphic change:
 - > Tributary sand loads are increasing??
 - Increased bank erosion
 - Sediment Sinks are decreasing
 - Side Channel Delta Change
- Altered Navigation Channel Shoaling, Dredging, and Flow Patterns
- Pool 7 is Probably Most Significant Example to Date
 - > Outdraft
 - Shift in Dredging
 - Greater sand loads to Pool 8??

Hydrogeomorphic units

WATER EXCHANGE

In this example, the water exchange ratio between the channel and the backwater is

 Q_3/Q_{dam} where Q = river flow

Expressed as a ratio or percentage

WATER EXCHANGE – A SURROGATE FOR GEOMORPHIC CHANGE

BUILDING STRONG_® and Taking Care of People!

BUILDING STRONG®

and Taking Care of People!

Change in Water Exchange Ratio:

- Shifted dredging downstream
- Increased outdraft at LD 7

Water Exchange, Goose Island, Pool 8

Canada, Esri, HERE, Garmin, INCREMENT P, USGS, METI/NASA, EPA, USDA | USACE, US Army Geospatial Cen...

Total Water Exchange Ratio (WER) for Navigation Pools in Geomorphic Reach 3 for the Discharge Exceeded 25% of the Time Annually

WER = $(\sum Q_{backwater}/Q_{total})$

WER Total 1980-1995 2007-2018

SEDIMENT MEASUREMENTS CHIPPEWA RIVER AT DURAND AND PEPIN

District/Other USACE PDT Members

St. Paul – Jon Hendrickson, Zach Kimmel, Alex Nelson

ERDC – David Abraham, William Butler

Leveraging/Collaborative Opportunities

BUILDING STRONG

- 1. St. Paul was developing a support agreement with the USGS
- 2. MVD suggested including ERDC ISSDOTv.2 surveys and methods
- 3. RSM funds created the St. Paul, ERDC, USGS team

and Taking Care of People!

Stakeholders/Partners

Jeff Ziegeweid, Will Lund, Joel Groten, USGS Minn.

Dave Dean, USGS Grand Canyon Research Center

Dan Buscombe, Northern Arizona State University

Faith Fitzpatrick, Joe Shuler, USGS Wisc.

CHIPPEWA RIVER SCHEDULE

2017

- Field Reconnaissance of Durand to Pepin Reach St. Paul District, USGS, • **USACE-ERDC** personnel.
- Purchased Equipment and set up monitoring stations this year •

2018

- USGS begins collecting data. Combined effort between Minnesota, ٠ Wisconsin, Arizona, & California Water Science Centers
- USACE-ERDC and St. Paul personnel measure bed load using Dune-• Tracking Technology using Regional Sediment Management (RSM) funds.

2019

- USGS continue data collection •
- St. Paul district develop HEC-RAS sediment model using RSM funds ٠

2020

and Taking Care of People!

- USGS data collection & analysis
- USGS summarizes results in Scientific Investigations Report •
- USACE- HEC and St. Paul personnel test HEC-RAS 1D/2D sediment model •

HTTPS://WWW.GCMRC.GOV/DISCHARGE_QW_SEDIMENT/

Discharge, Sediment, and Water Quality Monitoring

Home > Discharge, Sediment and Water Quality

- Gage height
- Q
- Water Temp
- Total suspended sediment concentration
- Susp silt and clay concentration
- Susp sand concentration
- Susp sand median grain size
- Instantaneous suspended silt and clay load
- Cumulative suspended silt and clay load
- Instantaneous suspended sand load
- Cumulative suspended sand load
- Calculated Instantaneous sand bedload
- Calculated cumulative Sand bedload

CHIPPEWA RIVER SAND LOAD

BUILDING STRONG_® and Taking Care of People!

Minnesota River Surrogate Metric: Acoustic Backscatter

20

and Taking Care of People!

Scientific Investigations Report 2016–5174

BUILDING STRONG_®

Groten, J.T., Ellison, C.A., and Hendrickson, J.S., Suspended-Sediment Concentrations, Bedload, Annual Sediment Loads, Particle-Sizes, and Surrogate Measurements for Selected Sites in the Lower Minnesota River, 2011 through 2014: U.S. Geological Survey Scientific Investigations Report 2016–5174, 29 p.

Data indicates:

- Minnesota River Sand Load is 250,000 yd3/yr.
- Minn. River dredging is 21,000 yd3/yr or 8.4% of total sand load.

21

Questions?

